History of chemistry
History of chemistry
Main article: History of chemistry
See also: Alchemy, Timeline of chemistry, and Nobel Prize in Chemistry
Ancient Egyptians pioneered the art of synthetic "wet" chemistry up to 4,000 years ago. By 1000 BC ancient civilizations were using technologies that formed the basis of the various branches of chemistry such as; extracting metal from their ores, making pottery and glazes, fermenting beer and wine, making pigments for cosmetics and painting, extracting chemicals from plants for medicine and perfume, making cheese, dying cloth, tanning leather, rendering fat into soap, making glass, and making alloys like bronze.
The genesis of chemistry can be traced to the widely observed phenomenon of burning that led to metallurgy—the art and science of processing ores to get metals (e.g. metallurgy in ancient India). The greed for gold led to the discovery of the process for its purification, even though the underlying principles were not well understood—it was thought to be a transformation rather than purification. Many scholars in those days thought it reasonable to believe that there exist means for transforming cheaper (base) metals into gold. This gave way to alchemy and the search for the Philosopher's Stone which was believed to bring about such a transformation by mere touch.
Greek atomism dates back to 440 BC, as what might be indicated by the book De Rerum Natura (The Nature of Things) written by the Roman Lucretius in 50 BC. Much of the early development of purification methods is described by Pliny the Elder in his Naturalis Historia.
A tentative outline is as follows:
1. Egyptian alchemy [3,000 BCE – 400 BCE], formulate early "element" theories such as the Ogdoad.
2. Greek alchemy [332 BCE – 642 CE], the Greek king Alexander the Great conquers Egypt and founds Alexandria, having the world's largest library, where scholars and wise men gather to study.
3. Arab alchemy [642 CE – 1200], the Muslim conquest of Egypt (primarily Alexandria); development of the Scientific Method by Alhazenand Jābir ibn Hayyān revolutionise the field of Chemistry.
4. The House of Wisdom (Arabic: بيت الحكمة; Bait al-Hikma), Al-Andalus (Arabic: الأندلس) and Alexandria (Arabic: الإسكندرية) become the world leading institutions where scientists of all religious and ethnic backgrounds worked together in harmony expanding the reaches of Chemistry in a time known as the Islamic Golden Age.
5. Jābir ibn Hayyān, al-Kindi, al-Razi, al-Biruni and Alhazen continue to dominate the field of Chemistry, mastering it and expanding the boundaries of knowledge and experimentation.
6. European alchemy [1300 – present], Pseudo-Geber builds on Arabic chemistry.
7. Chemistry [1661], Boyle writes his classic chemistry text The Sceptical Chymist.
8. Chemistry [1787], Lavoisier writes his classic Elements of Chemistry.
9. Chemistry [1803], Dalton publishes his Atomic Theory.
The earliest pioneers of Chemistry, and inventors of the modern scientific method, were medieval Arab and Persian scholars. They introduced precise observation and controlled experimentation into the field and discovered numerous Chemical substances.
"Chemistry as a science was almost created by the Muslims; for in this field, where the Greeks (so far as we know) were confined to industrial experience and vague hypothesis, the Saracens introduced precise observation, controlled experiment, and careful records. They invented and named the alembic (al-anbiq), chemically analyzed innumerable substances, composed lapidaries, distinguished alkalis and acids, investigated their affinities, studied and manufactured hundreds of drugs. Alchemy, which the Muslims inherited from Egypt, contributed to chemistry by a thousand incidental discoveries, and by its method, which was the most scientific of all medieval operations."
The most influential Muslim chemists were Jābir ibn Hayyān (d. 815), al-Kindi (d. 873), al-Razi (d. 925), al-Biruni (d. 1048) and Alhazen (d. 1039). The works of Jābir became more widely known in Europe through Latin translations by a pseudo-Geber in 14th century Spain, who also wrote some of his own books under the pen name "Geber". The contribution of Indian alchemists and metallurgists in the development of chemistry was also quite significant.
The emergence of chemistry in Europe was primarily due to the recurrent incidence of the plague and blights there during the so called Dark Ages. This gave rise to a need for medicines. It was thought that there exists a universal medicine called the Elixir of Life that can cure all diseases, but like the Philosopher's Stone, it was never found.
For some practitioners, alchemy was an intellectual pursuit, over time, they got better at it. Paracelsus (1493–1541), for example, rejected the 4-elemental theory and with only a vague understanding of his chemicals and medicines, formed a hybrid of alchemy and science in what was to be called iatrochemistry. Similarly, the influences of philosophers such as Sir Francis Bacon (1561–1626) and René Descartes (1596–1650), who demanded more rigor in mathematics and in removing bias from scientific observations, led to a scientific revolution. In chemistry, this began with Robert Boyle (1627–1691), who came up with an equation known as Boyle's Law about the characteristics of gaseous state.Chemistry indeed came of age when Antoine Lavoisier (1743–1794), developed the theory of Conservation of mass in 1783; and the development of the Atomic Theory by John Dalton around 1800. The Law of Conservation of Mass resulted in the reformulation of chemistry based on this law and the oxygen theory of combustion, which was largely based on the work of Lavoisier. Lavoisier's fundamental contributions to chemistry were a result of a conscious effort to fit all experiments into the framework of a single theory. He established the consistent use of the chemical balance, used oxygen to overthrow the phlogiston theory, and developed a new system of chemical nomenclature and made contribution to the modern metric system. Lavoisier also worked to translate the archaic and technical language of chemistry into something that could be easily understood by the largely uneducated masses, leading to an increased public interest in chemistry. All these advances in chemistry led to what is usually called the chemical revolution. The contributions of Lavoisier led to what is now called modern chemistry—the chemistry that is studied in educational institutions all over the world. It is because of these and other contributions that Antoine Lavoisier is often celebrated as the "Father of Modern Chemistry". The later discovery of Friedrich Wöhler that many natural substances, organic compounds, can indeed be synthesized in a chemistry laboratory also helped the modern chemistry to mature from its infancy.
The discovery of the chemical elements has a long history from the days of alchemy and culminating in the discovery of the periodic table of the chemical elements by Dmitri Mendeleev (1834–1907)and later discoveries of some synthetic elements.